Course Title: Cellular and Molecular Biochemistry

Level: Medical Students

Duration: 16 Weeks (2 hours/week)

Main Reference: Karthikeyan Biochemistry

Additional References: Lehninger Principles of Biochemistry, Stryer's Biochemistry

Assessment: Final exam (50–60 MCQs)

Course Objectives

By the end of this course, students will be able to:

- Describe the structure and function of biomolecules (amino acids, proteins, carbohydrates, lipids, nucleic acids)
- Explain enzyme mechanisms, kinetics, and regulation
- Understand biochemical underpinnings of molecular function in health and disease
- Connect macromolecular structure to physiological roles

Lesson Plan Overview

Week	Topic	Content Focus	Teaching Strategies	References
1	Introduction + Amino Acids	Amino acid structure, classification, properties, zwitterions, pKa	Lecture, structural diagrams, Q&A	The primary reference for this course is Karthikeyan's
2	Peptides & Protein Structure I	Peptide bond, primary & secondary structure, hydrogen bonding	Visuals, 3D models, group discussion	Biochemistry, with Lehninger and
3	Protein Structure II	Tertiary & quaternary structure, folding, motifs, domains	Case studies (e.g., misfolding), PDB demos	Stryer used as supplementary texts for additional
4	Structure- Function Relationships	Examples: Collagen, keratin, globular vs. fibrous proteins	Comparative tables, clinical connections	explanation and clarity.
5	Enzymes I: Basics	Classification, active site, mechanism of action	Enzyme models, classification flowcharts	
6	Enzymes II: Kinetics	Michaelis-Menten, Km, Vmax, Lineweaver- Burk	Problem-solving, graphs, concept mapping	

Week	Topic	Content Focus	Teaching Strategies	References
7	Enzymes III: Regulation	Allostery, covalent modification, zymogens, feedback inhibition	Diagram analysis, pathway examples	
8	Hemoglobin & Myoglobin	Structure, oxygen binding, cooperativity, Bohr effect	Clinical correlation (anemia, sickle cell), O2 dissociation curves	
9	Carbohydrates I	Monosaccharides, isomerism, stereochemistry, anomers	Molecule kits, exercises	
10	Carbohydrates II	Glycosidic bonds, disaccharides, polysaccharides	Chart comparisons, structural drawing	
11	Lipids I	Fatty acids, structure, saturation, triglycerides	Lipid models, case studies	
12	Lipids II	Phospholipids, sphingolipids, glycolipids, biological membranes	Membrane diagrams, role in signaling	
13	Membranes	Lipid bilayer, fluid mosaic model, membrane proteins	Interactive apps/models, group activity	
14	Nucleotides	Structure, purines/pyrimidines, base properties, tautomerism	Puzzle models, functional roles	
15	Nucleic Acids	DNA/RNA structure, base pairing, double helix, types of RNA	DNA models, Watson-Crick model, clinical insights	
16	Revision + Practice MCQs	Summary of key concepts + 30–40 practice MCQs	Group quiz, Q&A, mock test	

Additional Notes

- Assignments: Optional short weekly quizzes for reinforcement
- Interactive Elements: Use molecular models, diagrams, and clinical cases to link biochemistry with medicine
- MCQ Focus: Structure-based, function-based, regulatory pathways, clinical correlations